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Abstract-A full-wave moment method implementation, using a
combination of spatial and spectral domains, is developed for the
analysis of quasi-optical systems. An electric field dyadic Green’s
function, including resonant and nonresonant terms correspond-

ing to coupling from modal and nonmodal fields, is employed
in a Galerkht routine. The dyadic Green’s function is derived

by separately considering paraxial and nonparaxial fields and is
much easier to develop than a mixed, scalar and vector, potential
Green’s function. The driving point impedance of several antenna
elements in a quasi-optical open cavity resonator and a 3 x 3 grid

in free space are computed and compared with measurements.

I. INTRODUCTION

QUASI-OPTICAL power combining techniques provide a

means for combining power from numerous solid-state

millimeter-wave sources attached to radiating elements

such as antenna arrays or grids, as shown in Figs. 1 and 2.

The power from the radiating elements is combined in free-

space over a distance of many wavelengths to channel power

predominately into a single paraxial mode. The complex de-

vice field interactions render it difficult to optimize efficiencies

and ensure stable operation. However, computer aided analysis

techniques are evolving to aid in design. The strategy is to

develop, using numerical field analysis, a multiport impedance

model of the linear part of the quasi-optical system. This

can then be interfaced with commercial microwave circuit

simulators. Efficiency requires that volumetric discretization

must be avoided. By utilizing Green’s functions appropriate

to the physical structure, discretization can be limited to

surfaces. In [1 ]–[4] a series of developments culminated in

a straight forward methodology for developing the dyadic

Green’s function of a quasi-optical structure. The dyadic

Green’s function is derived by separately considering paraxial

and nonparaxial fields. It is not feasible to derive a mixed,

scalar and vector, potential Green’s function, as required in

conventional space domain moment method techniques. As an

alternative, we have adapted an efficient moment method field

solver [5], [6] to use dyadic Green’s functions.
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Fig. 1. A quasi-optical power combiner configuration for an open cavity
resonator.

The modeling of quasi-optical systems has generally been

based on the unit cell approach [7], [8] where the minimum

three dimensional cell of an array, generally containing a single

active device, is modeled using symmetry of the structure

to establish electrical and magnetic side-walls for the cell.

A moment method or finite element program is then used

to electrically characterize the cell and obtain the impedance

presented to a single device. The unit cell approach assumes

an infinitely periodic structure with no mutual coupling. In

order to obtain accurate modeling, structures of finite extent

must be considered along with mutual coupling. In this paper

we introduce a moment method technique [9] using a dyadic

Green’s function which describes all of the electric fields, in-

cluding paraxial and nonparaxial fields, for radiating elements

of finite size in an open cavity resonator and for a 3 x 3 grid

in free space. Mutual coupling from all of the elements in the

quasi-optical systems are considered.

II. OPEN CAVITY RESONATORDYADIC GREEN’S FUNCTION

A. General Description

A dyadic Green’s function for the piano-concave quasi-

optical open cavity resonator was developed by Heron et al.

[2]–[4]. The cavity resonator, shown in Fig. 1, consists of a

planar reflector at z = O and a partially transmitting spherical

reflector with its center located at z = D. The planar reflector

is assumed to be perfectly conducting with infinite dimensions

in the transverse direction and the spherical reflector is of finite

dimension with focal length with respect to the z and y axis,

Fz and Fv, respectively. The medium in the cavity is free

space. The electric field dyadic Green’s function of the open

cavity resonator is derived in two parts [3], [4]

GE = GE. + ~& (1)
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where ~ E, describ:s the effect of the resonator (cavity)

modal fields and GEn describes the nonresonator fields.

The nonresonator fields are found by removing the paraxial

component GEP from the half-space Green’s function, GE~,

to give

GE = ~Eh – ~EP + GE.. (2)

The Green’s function is evaluated in two parts

GE = &C + ~E~ (3)

where &. = ~ET. – ~Ep represents the cavity contribution

of the open cavity resonator and ~E~ rep~esents the half-space

[direct radiation) contribution. However ~E~, as presented in

[3]. is not suitable for inclusion in a moment method field

solver because of numerical problems. We develop here a half-

space dyadic Green’s function in the spectral domain which

has both the required numerical stability and compatibility

~ith the cavity dyadic Green’s function. The development of

~EC is based on that described in [2].

B. Cavity Contribution

The cavity resonant dyadic Green’s function GE, describes

the coupling between an electric current source, located on

the plane z = d, and the cavity modal fields in the cavity

whereas the paraxial dyadic Green’s function ~Ep describes

the paraxial propagation due to the traveling wave-beams in

the absence of the spherical reflector. With the subtraction of

the paraxial components from the resonator components, the

dyadic Green’s function, for the range O < z < D, is given

by [3]

N. N.
Rmnqmn

GE. = – ~ ~ 2(1+ R~n@mnJ

W1.=o‘n=o

(-%%- Jzin)(E:. - -EXJI, (4)

where N~ and N. represent the number of transverse modes

and It = ax ax + avav is the unit transverse dyad. Primed co-

ordinates denote the source location and unprimed coordinates

denote the test location. The terms R mn and IL n represent the
reflection coefficient and phase, respectively, of the traveling
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\
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wave-beam modes. The scalar electric modal field Emn is

given by the Hermite-Gaussian traveling wave-beam as [10]

E:n(z, ?J,z’)

‘L2G’+”’)-’’’(’+
~2)–1’4

. Hem (v5z/zz)Hen(/Zy/gz)

. exp

{

-;[(z/xz)’ + (y/y.)’]

[
+ j koz+ ;(U(+Z)’+v(?J/y=)2)

() -1 (u)

i~:i’~w
where

z z
u=—

~ox2 ‘
v.—

koY’

Z:= X2(1 +U’), IJ:=Y2(1+ W’)

with the Gaussian mode parameters defined as [10]

(5)

~2.;@.D(2-9 (6)

(7)

The Gaussian mode parameters X and ~ determine the rate

at which the field strength decays in the aZ and a~ directions

respectively. In the above expressions 20 and k. represent the

free space impedance and wavenumber, respectively, given by

[
20= ~, ko = we.

co

The Hermite polynomials, defined in [11]

Hen(z) = (–1)” exp(z2/2) ~ [exp(–Z2/2)] (8)

are orthogonal functions. The E~n fields represent the desired

wave-beam modes with the beam waist at z = O. E~n
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refers to propagation in the positive az direction and E;n

in the negative a. direction. An assumption is made that

the electric field has only transverse components and no az

component (quasi-TEM modes). This assumption is valid since

the spherical reflector has a radius of curvature much greater

than the wavelength of operation. This approximation holds

true especially near z = O where the phase front is flat and the

fields are purely transverse. The antennas are sufficiently close

to z = O (d << D) that the fields are approximately TEM.

The phase term ~m. is the ratio, for the rrwzth mode, of

the intensity for each mode of the outgoing wave-beam to

the incoming wave-beam evaluated at the spherical reflector

surface, z = D, given as

(9)

A good approximation for ~mn can be found by evaluating

(9) at z = y = O. At resonance, the phase of the traveling

wave-beam should remain unchanged after one complete pass

through the resonator so that the resonant frequency for each

cavity mode occurs when the product Rmn $mn in the cavity

Green’s function (4) approaches – 1. For an mn transverse

family there is an infinite number of resonant frequencies

which we will index by q where q is the number of half

wavelengths along the cavity axis. Thus the field structure

in the cavity can be designated fully as TEMm,n,g.

C. Cavity Losses

For the open cavity resonator two types of losses are

considered, conductor and diffraction losses which are due

to the finite conductivity and aperture size of the spherical

reflector, respectively. With the combination of these losses,

the modal value for Rmn can be found as

where I_ represents conductor losses and ~d,mn represents

diffraction losses and power extracted from the cavity. The

reader is referred to [2] for techniques for the evaluation of

(lo).

D. Half-Space Green’s Function

The half-space is defined to be the region, z >0, with the

absence of the spherical reflector, A dyadic Green’s function

in the spatial domain for this geometry is given in [12] as

/ ——, \

where Go (r I r’) is the free space Green’s function

~–jkolr-r’l

Go(r I r’) =
47rlr-r’l

(12)

with the distance between source and test locations

Ir-r’l = (z -z’)’+ (y-y’)’ (13)

703

and the distance between source and test locations due to the
image of the ground plane

Irz - r~l = ~(z - 0?)2 + (y - y’)’ + 4d2. (14)

When the test location equals the source location, x = x( and

y = y’, the Green’s function exhibits a strong singularity. A

singularity of this order can cause severe numerical error when

trying to numerically integrate such a function. For this reason

it is desirable to work in the spectral domain. The spectral

domain Green’s functions are [13]

()–Zcl k; – k:G&h(k.,Icy) = ~ ~ (1 – e-~’d~z) (15)

()k; – k;
d~h(k.z, kv) = ~ ~ (1 - e-~’dkz) (16)

z

and

-( )Z. k. kv—— — (1 - e-~’’”) (1’7)
2ko k.

where

k: = k: – k: – kj, Im(kz) <0. (18)

III. METHOD OF MOMENTS

A. General Formulation

The boundary value problem for the current distribution on

the planar radiating elements in the quasi-optical system is

formulated as an electric field integral equation (EFIE). From

the boundary condition stating that the total tangential electric

field on the antenna surface is zero

-E~’(z, y) = E~(q y) (19)

where subscript t denotes the tangential components of the

electric fields. E~ is the incident electric field and E~t is

the scattered electric field, The incident field is the electric

field produced by the source that is used to excite the antenna

surface. The incident field E~ produces a surface current

density JS on the patch surface which in turn produces a

scattered field E~t where some of the field is coupled into

the quasi-optical system and the rest of the field is radiated

out of the system. The scattered field can be written in terms

of a dyadic Green’s function

E&(z,y) = / / GE . Js(z’, y’) dx’dy’. (20)
Y’ z’

In order to solve for E~t in (20) an approximation for the

unknown surface current density is needed. The unknown

surface current density can be expanded in a set of N basis

functions

N

Js(#, y’) = ~IiW@, y’) (21)
‘i=l

where Wi is the ith basis function and Ii is its unknown

complex amplitude. The basis functions Wi can represent

currents in the x and y directions

W;(%’> /) = W:(x’)az + Wy(y’)iiv. (22)
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Fig. 3. An r-directed sinusoidal basis function.

Substituting (21) into (20) and testing (l9) with the same set

of basis functions, known as the Galerkin method, yields a

set of linear algebraic equations to be solved for the unknown

currents Ii

[Z][I] = [V] (23)

where the elements of the Z matrix are

‘=-l lllWJ””

~GE ~W,(z’, y’) dz’dg’dz dy (24)

and the elements of ~’ are

VJ =
//

Wl(z, y) . E~(z, y)dxdy. (25)
Yx

B. Open Ca~Jity Resonator

With the dyadic Green’s function for the open cavity res-

onator being comprised of cavity and half-space contributions,

it is best to work with the moment matrix elements in the

same manner

Zj, = zc,j~+ z~,jt (26)

where Z. and .zk represent the cavity and half-space contri-

butions, respectively, with elements given by

‘C’=-llllr ‘
Wj(x, y) . GEC(~, ZJ;~’, Y’)

~w~(x’, y’) dx’dy’dx dy (27)

and

“J=-l.ll(l(
Wj(J, y) . G~fi(X I %’~y I y’)

W,(X’, y’) dz’dy’dx dy. (28)

[t is important to note that GE, in (27) is not a function of—
the distance between the source and test location whereas ~Ek

in (28) is a function of this distance. The final set of linear

aquations when solving for the x and y currents becomes

where Z;%x = Z~~, + Z~;,, Z~~ = Z~~L, Z~ = Z~~,,

Z#’ = z~~~ +Z~~~, ~,i’= 1,2, . . .. Nandnd l,k = Nz’+
1, NZ +2,’..., N with N = NZ + Ny. N. and Nu are the

number of z- and y-directed basis functions, respectively. The

x.+a
I

Fig. 4. Locations of z- and y-directed currents on a rectangular grid,

submatrix [Z&U] denotes the contribution of v-directed testing

of the field produced by u-directed current basis elements and

the subscripts t and s refer to the individual test and source

basis elements, respectively. The voltage vectors [Vj’] and

[~’], of length NZ and N ~, respectively, correspond to Z-

and y-directed testing of the incident field. Similarly, [l,Z] and

[1:] refer to the current expansion coefficients associated with

each source basis function. The moment matrix [Z] is a square

matrix of order N which is symmetrical (due to the Galerkin

method) and diagonally strong.

Sinusoidal basis functions are used for the current expansion

and testing functions. An x-directed sinusoidal basis function
centered at (ZL, y,) is shown in Fig. 3 for a cell size of a x b

and is given by

and for a y-directed sinusoidal basis function

[
sin[k”(b–ly–yzl)] Iy-wl<b

w:(y) = a sm (kob) ‘ Iz–z,l ~a/2 (31)
(0, otherwise.

A basis function is spanned over two rectangular cells and the

current amplitudes 1, are computed at the peak of each basis

function as shown in Fig. 4.
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For a grid divided into equal size rectangular cells of

dimension a x b, the moment matrix elements for the cavity

contribution are found by substituting the Green’s function

given in (4) into (27) yielding

and

‘%= ~? ‘“”4””2(1 + Rmn&rm)‘m=o n=o

‘Yk +b

J J

Zk+$
w~(y’)

yk–b Zk—+

(32)

(33)

l%e elements are calculated on the plane z = d and contain

no cross-terms. Since the Green’s function given in (4) is a

function of the source and test location and not the distance

between the two, the four dimensional integration can be
divided into two separate double integrations over the source

and test fields. The double integration can be computed

very efficiently and has no convergence problems. Since the

elements are a sum of all the modes bei~g considered, it is

most efficient to combine separate computations of the double

integration for each mode.

The moment matrix elements for the half-space having equal

size cells of dimension a x b are found from (28) as

and

. Wow: dx’dy’dx dy. (37)

As mentioned earlier direct evaluation of (34) and (37) would

be very difficult due to the singularity that occurs when the

source and test location are at the same point (self-term). The

self-terms are the dominate terms in the moment matrix and

inaccurate evaluation of these terms will result in unreliable

solutions, For the cross terms (35) and (36) no singularity

occurs because the source and test fields are never at the same

location, but direct evaluation is still difficult due to the four

integrations required. With these problems it is best to work

in the spectral domain.

The dyadic Green’s function for the half-space can be

written as the inverse Fourier transform of

GEh(x IX’; y I ?/) = &
/“/

co=

Gj3h(k., /ky)
—cc —w

. ~j,m (~–~’)ej,,(wv’) dkm dky. (38)



..
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO 5, MAY 1996/Ub

104

103
z
E

g

I
J
1

1

I

A I
. . . . . . . . . . . . . ; . . . . . . . . . .

.
:

. . I
‘\, :

101

98
8.548ii5022 8.5027 8.5032

FREQUENCY (GHz)
8.5505

FREQUENCY (GHz)
8.553

(a)

‘85.5 ~

(a)

-83.5

-84.5

~
al
b

& -85.5
u.!
w
<
z
n

-86.5

!
1
1
1
1
1
1
I
1
I
I

i !, 1

4
I ‘1

*.-.4...,4-. -.-.,....+-* %.“.*,..,,.,-

I

-86

~
a)
&
g .86,5

-87

.87.5 ~

8.5022 8.5027 8.5032
FREQUENCY (GHz)

.87.5 ~
8.548 8.5505 8.553

FREQUENCY (GHz)

(b)

Fig. 7. Driving point impedance of the inverted L antenna for the
TEMO, I ,35 and TE’h#Il ,.,35 modes: (a) magnitude; (b) phase. Sohd line,

(b)

Fig. 6. Driving point impedance of the reverted L antenna for the
17EIv10,0 ,35 mode. (a) Magnitude, (b) Phase. Sohd hne, simulation; dashed
line, measurement. simulation; dashed line, memurement.

Applying (38) to (34)–(37) and using the even and odd

properties of the integrands along with a transformation to

polar coordinates, kx = ~ cos Q and kg = [j sin a, results in
the following

“( )Cos (A@) – Cos (k, a) 2
~; – g

F;y(kz, /kv) = COS [kz(%~ – q)] COS [ity(y~ – yk)]

(42)

“( )COS(kvb) – COS (k,,) 2

~: – ~; (43)
J!“ . .
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Fig. 8. A coaxial fed rectangularpatch antenna.

~j::(kz, kv) = sin [kz(zj – w)] sin [~v(yj – Yk)l The driving point impedance at

{ –4ki )
voltage generator is computed as

the location of the delta-gap

~sin(koa)s;(kob)~ v,

[si;i::;::)l[si!J::;J:)l

Zin= f (46)
P

(

where Ip is the current at the delta-gap computed by the
cos (kXa) – cos (koa)

)

method of moments.
k; – k;

(Cos (kvb) – Cos (h)b)
@ – ~z

V

(44) IV. COMPARISON OF COMPUTED

AND EXPERIMENTAL RESULTS

The expressions in (42)–(44) are the results of the Fourier
A. Inverted L Antenna

transforms of the basis functions evaluated in closed form. Comparisons of measured and simulated results were made

Techniques for efficient evaluation of the integrals in (39)–(41) for the open cavity structure shown in Fig. 1 with an electri-

cal be found in [14], [15].
tally short inverted L antenna, shown in Fig, 5. The radii of

The excitation vector used for (25) is a delta-gap voltage
focal lengths of the spherical reflector are F. = 0.894308 m,
Fv = 0.953839 m and D = 0.620494 m as determined in [2]

generator given as and for the antenna the wire diameter is 0.9 mm and length L

is 2.6 mm located at the planar reflector. The simulated results

{

v = 1 for p equal to feed point
are virtually identical to those in [2]. Note that the previous

P O otherwise.
(45) work [2] is restricted to short wire antennas. For the simulation

the L antenna was divided into 10 cells with a delta-gap source
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Slc O/c
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Fig. 9. Impedance Smith chart showing the tilving point impedance of

the patch antenna without the reflector: solid line, simulation; dashed line,

measurement.

placed between the first and second cells. The location of the

antenna in the cavity was at (–90.6 mm, 15 mm) with d = 1.9

mm. The magnitude and phase of the driving point impedance

are shown in Fig. 6 for the TEMo,o,M mode and in Fig. 7 for

the TEMO,l ,35 and TEM1,0,35 modes (the TEMO,l)M mode

occurs first in frequency and then the TEM1,0,35 mode.)

B. Rectangular Patch Antenna

A measurement of a coaxial center fed rectangular patch

antenna, shown in Fig, 8 with dimension L = 15 mm, W = 5

mm, and d = 1 mm, was taken without the reflector. The

driving point impedance is shown in Fig. 9. Here the patch

was divided into 16 cells with a delta-gap source placed in

the center.

C. 3 x 3 Grid in Free Space

Measurements and simulations were performed in free space

for the 3 x 3 grid shown in Fig. 10. The grid consists of 9 unit

cells where each unit cell is of dimension 51.8 mm x 51.8

mm with the metallic grid lines having a length of L = 42

mm and a width of W = 6.35 mm. The gap spacing where

the active device would be was 9.8 mm. Fig. 11 shows the

driving point reflection coefficient magnitude for an extended
unit cell (93.8 mm x 93.8 mm) with the same grid line

width and gap spacing. Next the whole 3 x 3 grid structure

was considered. Fig. 12 shows the driving point reflection

coefficient magnitude in the center gap for the entire grid.

From these results we can observe that there is significant

mutual coupling between the grid elements. Measurements

and simulations were also performed for the other gaps in

the grid. The results indicate that the impedance for edge and

corner gaps differs from that of the middle gap due to the finite

extent of the grid. The technique presented here can calculate

coupling parameters and location specific impedances which

cannot be obtained using a unit cell approach.
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Fig. 10. A 3 x 3 grid in free space with the driving point impedance being
measured in the middle gap.

1 -. I 1 1 1
\\’ I

nL I I 1 I I I

“o 1 5 6
F?3EQUEiCY (GH:)

Fig. 11. Driving point reflection coefficient magnitude of the unit cell: solid

line, simulation; dashed line, measurement.

V. CONCLUSION

A full-wave moment method implementation has been de-

veloped for the analysis of quasi-optical systems. This tech-
nique uses a dyadic Green’s function which is derived by

separately considering the paraxial and nonparaxial fields.

This form of the dyadic Green’s function is particularly

convenient for quasi-optical systems because of its relative

ease of development. This leads to computation of the moment

matrix elements using a combination of spatial and spectral

domains. Two types of quasi-optical systems were analyzed:

the open cavity resonator, free space patch antenna resonator,

and the grid radiator, where the radiating elements in each

system were of finite size making no unit cell approximations.

As a verification of the moment method, simulated results have

been shown to compare favorably with measurements. The
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Fig. 12. Driving point reflection coefficient magnitude of the 3 x 3 grid:
solid line, simulation; dashed line, measurement.

technique presented here will aid in the design of quasi-optical

systems by accurately predicting the driving point impedances

of the radiating elements.
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