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Abstract—A full-wave moment method implementation, using a
combination of spatial and spectral domains, is developed for the
analysis of quasi-optical systems. An electric field dyadic Green’s
function, including resonant and nonresonant terms correspond-
ing to coupling from modal and nonmodal fields, is employed
in a Galerkin routine. The dyadic Green’s function is derived
by separately considering paraxial and nonparaxial fields and is
much easier to develop than a mixed, scalar and vector, potential
Green’s function. The driving point impedance of several antenna
elements in a quasi-optical open cavity resonator and a 3 x 3 grid
in free space are computed and compared with measurements.

I. INTRODUCTION

UASI-OPTICAL power combining techniques provide a
Qmeans for combining power from numerous solid-state

millimeter-wave sources attached to radiating elements
such as antenna arrays or grids, as shown in Figs. 1 and 2.
The power from the radiating elements is combined in free-
space over a distance of many wavelengths to channel power
predominately into a single paraxial mode. The complex de-
vice field interactions render it difficult to optimize efficiencies
and ensure stable operation. However, computer aided analysis
techniques are evolving to aid in design. The strategy is to
develop, using numerical field analysis, a multiport impedance
model of the linear part of the quasi-optical system. This
can then be interfaced with commercial microwave circuit
simulators. Efficiency requires that volumetric discretization
must be avoided. By utilizing Green’s functions appropriate
to the physical structure, discretization can be limited to
surfaces. In [1]-[4] a series of developments culminated in
a straight forward methodology for developing the dyadic
Green’s function of a quasi-optical structure. The dyadic
Green’s function is derived by separately considering paraxial
and nonparaxial fields. It is not feasible to derive a mixed,
scalar and vector, potential Green’s function, as required in
conventional space domain moment method techniques. As an
alternative, we have adapted an efficient moment method field
solver [5], {6] to use dyadic Green’s functions.
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Fig. 1. A quasi-optical power combiner configuration for an open cavity
resonator.

The modeling of quasi-optical systems has generally been
based on the unit cell approach [7], [8] where the minimum
three dimensional cell of an array, generally containing a single
active device, is modeled using symmetry of the structure
to establish electrical and magnetic side-walls for the cell.
A moment method or finite element program is then used
to electrically characterize the cell and obtain the impedance
presented to a single device. The unit cell approach assumes
an infinitely periodic structure with no mutual coupling. In
order to obtain accurate modeling, structures of finite extent
must be considered along with mutual coupling. In this paper
we introduce a moment method technique [9] using a dyadic
Green’s function which describes all of the electric fields, in-
cluding paraxial and nonparaxial fields, for radiating elements
of finite size in an open cavity resonator and for a 3 x 3 grid
in free space. Mutual coupling from all of the elements in the
quasi-optical systems are considered.

II. OPEN CAVITY RESONATOR DYADIC GREEN’S FUNCTION

A. General Description

A dyadic Green’s function for the plano-concave quasi-
optical open cavity resonator was developed by Heron et al.
[2]-[4]. The cavity resonator, shown in Fig. 1, consists of a
planar reflector at z = 0 and a partially transmitting spherical
reflector with its center located at z = D. The planar reflector
is assumed to be perfectly conducting with infinite dimensions
in the transverse direction and the spherical reflector is of finite
dimension with focal length with respect to the x and y axis,
F, and F,, respectively. The medium in the cavity is free
space. The electric field dyadic Green’s function of the open
cavity resonator is derived in two parts [3], [4]

g = Ggn+Gg, 0))

(o]
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Fig. 2. A gnd amplifier on a dielectric slab with X and Y polarizers.

where Gpg, describes the effect of the resonator (cavity)
modal fields and G, describes the nonresonator fields.
The nonresonator fields are found by removing the paraxial
component G Ep from the half-space Green’s function, Ggn,
lo give

Gg = Ggn — Gp, + Gg,. 2)

The Green’s function is evaluated in two parts

Gp = Gp.+Gp 3)

where Gg. = Gg, — Ggp represents the cavity contribution
of the open cavity resonator and G gy, represents the half-space
(direct radiation) contribution. However G g, as presented in
[3]. is not suitable for inclusion in a moment method field
solver because of numerical problems. We develop here a half-
space dyadic Green’s function in the spectral domain which
has both the required numerical stability and compatibility
with the cavity dyadic Green’s function. The development of
G . is based on that described in [2].

B. Cavity Contribution

The cavity resonant dyadic Green’s function G g, describes
the coupling between an electric current source, located on
the plane z = d, and the cavity modal fields in the cavity
whereas the paraxial dyadic Green’s function G, describes
the paraxial propagation due to the traveling wave-beams in
the absence of the spherical reflector. With the subtraction of
the paraxial components from the resonator components, the
dyadic Green’s function, for the range 0 < z < D, is given

by [3]

N, N
~ = - Rmn¢mn
Gg. = — L TR TIRR
E mZ:OZ_IO 2(1 4+ Ryn%mn)
) (E;m - Er—ir—m) (E;r:n - E’:r‘l‘_’n)it @

where N, and N,, represent the number of transverse modes
and I; = 4,4, + &,4, is the unit transverse dyad. Primed co-
ordinates denote the source location and unprimed coordinates
denote the test location. The terms R,,,, and %, represent the
reflection coefficient and phase, respectively, of the traveling
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wave-beam modes. The scalar electric modal field E,,,, is
given by the Hermite-Gaussian traveling wave-beam as [10]

Ev:vt'zn(‘r' Y, Z)

_ Zo 2\—1/4 2\—1/4
=V Xm0

. Hem(\/Q_fE/x'z)Hen(\/Ey/y:)
exp {_gmf + (v/v.)?]

o + g (ula/o.) + ol
- <m + %) tan™" (u)

- <n + %) tan~! (v)} } (5)

B < z
T koX?'

where

IS

with the Gaussian mode parameters defined as [10]

Xzzé,/FzD(%Fg) 6)
Y2=kio1/FyD(2~F2). 0]
Yy

The Gaussian mode parameters X and Y determine the rate
at which the field strength decays in the a, and &, directions
respectively. In the above expressions Zg and kg represent the
free space impedance and wavenumber, respectively, given by

Ho
Zy = P ko = wy/poco.

The Hermite polynomials, defined in [11]

n

He,(z) = (—1)"exp(m2/2)§a—:—;[exp(—x2/2)] ®

are orthogonal functions. The F  fields represent the desired
wave-beam modes with the beam waist at = = 0. E}
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refers to propagation in the positive a, direction and E,,,
in the negative a, direction. An assumption is made that
the electric field has only transverse components and no a,
component (quasi-TEM modes). This assumption is valid since
the spherical reflector has a radius of curvature much greater
than the wavelength of operation. This approximation holds
true especially near z = 0 where the phase front is flat and the
fields are purely transverse. The antennas are sufficiently close
to z =0 (d < D) that the fields are approximately TEM.

The phase term ,,, is the ratio, for the mnth mode, of
the intensity for each mode of the outgoing wave-beam to
the incoming wave-beam evaluated at the spherical reflector
surface, z = D, given as

o = E} . (z,y,D)
mn

= Fon(@.0. D)’ 9

A good approximation for ., can be found by evaluating
(9) at x = y = 0. At resonance, the phase of the traveling
wave-beam should remain unchanged after one complete pass
through the resonator so that the resonant frequency for each
cavity mode occurs when the product Ry, in the cavity
Green’s function (4) approaches —1. For an mn transverse
family there is an infinite number of resonant frequencies
which we will index by ¢ where ¢ is the number of half
wavelengths along the cavity axis. Thus the field structure
in the cavity can be designated fully as TEM,, », 4.

C. Cavity Losses

For the open cavity resonator two types of losses are
considered, conductor and diffraction losses which are due
to the finite conductivity and aperture size of the spherical
reflector, respectively. With the combination of these losses,
the modal value for R,,, can be found as

Rmn = —|F|ad,mn (10)

where I' represents conductor losses and oy, represents
diffraction losses and power extracted from the cavity. The
reader is referred to [2] for techniques for the evaluation of
(10).

D. Half-Space Green’s Function

The half-space is defined to be the region, z > 0, with the
absence of the spherical reflector. A dyadic Green’s function
in the spatial domain for this geometry is given in [12] as

Gan(r | 1) = jwpg (it - V;cgvé)
(Go(r | 1) = Go(ri | x})) (D)
where Gy(r | r') is the free space Green’s function
—jko|r—1'|
Go(r |1') = prr— (12)
with the distance between source and test locations
p-rl= -+ -y a3
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and the distance between source and test locations due to the
image of the ground plane

-l =@ —o -y R (4
When the test location equals the source location, z = z’ and
y = ¥/, the Green’s function exhibits a strong singularity. A
singularity of this order can cause severe numerical error when
trying to numerically integrate such a function. For this reason
it is desirable to work in the spectral domain. The spectral
domain Green’s functions are [13]

- _ZO (k(% - kz) —32dk
O (kg ky) = 2T ) (1 — %R} (185)
Eh( y) 2k0 kz ( )
. ~Z [ k2 — k2 .
G (ko ky) = Tko"( Okz y>(1—e—ﬂd’%) (16)
and
émEyh(k:caky) = é%wh(k’w’ky)
_ Zo kzky —j2dk,
| —2k0(kz)(l—e ) an
where
k?=k§—k2—k2, Im(k.)<0. (18)

III. METHOD OF MOMENTS

A. General Formulation

The boundary value problem for the current distribution on
the planar radiating elements in the quasi-optical system is
formulated as an electric field integral equation (EFIE). From
the boundary condition stating that the total tangential electric
field on the antenna surface is zero

~E;®"(z,y) = EP(z,y) (19)

where subscript ¢ denotes the tangential components of the
electric fields. Ei"° is the incident electric field and E°* is
the scattered electric field. The incident field is the electric
field produced by the source that is used to excite the antenna
surface. The incident field Ei*® produces a surface current
density Js on the patch surface which in turn produces a
scattered field E5®** where some of the field is coupled into
the quasi-optical system and the rest of the field is radiated
out of the system. The scattered field can be written in terms
of a dyadic Green’s function

B (z,y) = / / Gg - Js(a',y')de'dy’.
yl m’

In order to solve for E°** in (20) an approximation for the
unknown surface current density is needed. The unknown
surface current density can be expanded in a set of N basis
functions

(20)

N
Is@,y) =) LWi',y) 1)

=1
where W, is the ith basis function and I; is its unknown
complex amplitude. The basis functions W, can represent
currents in the x and y directions

W, (', y) = WF(z")a, + W2 (y)a,. 22)
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Fig. 3. An r-directed sinusoidal basis function.
Substituting (21) into (20) and testing (19) with the same set
of basis functions, known as the Galerkin method, yields a
set of linear algebraic equations to be solved for the unknown — >~ == = 1
currents I * * * *
[Z]l1] = [V] (23) | | | | |
where the elements of the Z matrix are el b e ] e
VAL S A T A
yJaJy Jr
-G - W, () de' dy dz dy (24) ‘ ‘ ‘ ' ‘
and the elements of V" are * B * B * BN e * B e *
Vi = //WJ($7y) : Einc(l’vy) dz dy. (25) ‘ ‘ ‘ ‘ ‘
yJr

B. Open Cavity Resonator

With the dyadic Green’s function for the open cavity res-
onator being comprised of cavity and half-space contributions,
it is best to work with the moment matrix elements in the
same manner

ZJZ = Zc,]i + Zh,]z (26)

where Z. and Z; represent the cavity and half-space contri-
butions, respectively, with elements given by

Zejo=— //T/y/W(M/ ) Gre(w,y; 2", y')

-W,(z',y) dx'dy' dx dy

////ny ) G

W (o', ') da' dyy' dv dy. (28)

[t is important to note that Gg. in (27) is not a function of
the distance between the source and test location whereas G g,
in (28) is a function of this distance. The final set of linear
equations when solving for the z and y currents becomes

@7

Zhye = (z|a"y|y)

z;7]) | 27] ([m) ([V—f])

71 7k ] — 7 (29)
([ZW] AN vi’)

where Z7F = ZQ“JZ + 25 2R = 2 2L = 2,
zyy = Zyll’k + Z7Y Te Jof = 1,2, Ny and [,k = N, +
1,N,+2,....,N with N = N, + N . N, and N, are the

aumber of x- and y-directed basis functions, respectively. The

Fig. 4. Locations of r- and y-directed currents on a rectangular grid.

submatrix [Z;*] denotes the contribution of v-directed testing
of the field produced by u-directed current basis elements and
the subscripts ¢ and ¢ refer to the individual test and source
basis elements, respectively. The voltage vectors [Vf] and
V'], of length N, and N, respectively, correspond to -
and y-directed testing of the incident field. Similarly, [/*] and
[I}] refer to the current expansion coefficients associated with
each source basis function. The moment matrix [Z] is a square
matrix of order N which is symmetrical (due to the Galerkin
method) and diagonally strong.

Sinusoidal basis functions are used for the current expansion
and testing functions. An z-directed sinusoidal basis function
centered at (x,.y,) is shown in Fig. 3 for a cell size of @ x b
and is given by

sin [ko(a—|z—=,])] I-T - Iz| <a
W’”(w) — bsm (koa) s Iy yzl < b/2 (30)
otherwise
and for a y-directed sinusoidal basis function
sinfro(b—ly—w.)] |y~ %l <D
Wi (y) = asm(kod) 7 |p —u,| < af2 31
0, otherwise.

A basis function is spanned over two rectangular cells and the
current amplitudes I, are computed at the peak of each basis
function as shown in Fig. 4.
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Fig. 5. A coaxial fed inverted L antenna.

For a grid divided into equal size rectangular cells of
dimension a X b, the moment matrix elements for the cavity
contribution are found by substituting the Green’s function
given in (4) into (27) yielding

TT mn¢’ n
Ze5i = Z Z R

yz+g x;+a
/ / W (')
—% z;—a

E,. (&Y ,d) - E} (&, d)] de’dy
+2

y;+ z;+a
Yj —% zj—a

- Ejr_:.n(xa Y, d)] dz dy

' [Emn(x>y7d) (32

and

yy Rpntmn

Do = ,;);) 20+ Ronntorn)
Ye+b pre+%

o Ly M
Y Ic__

' Emn( ,yad)_E+ (
yi+bd  pr+5

/yt—b /mz——

: [E;m(m’y’ )_

"y, d)] dz'dy

E:m(w,y,d)] dedy.  (33)
The elements are calculated on the plane z = d and contain
no cross-terms. Since the Green’s function given in (4) is a
function of the source and test location and not the distance
between the two, the four dimensional integration can be
divided into two separate double integrations over the source
and test fields. The double integration can be computed
very efficiently and has no convergence problems. Since the
elements are a sum of all the modes being considered, it is
most efficient to combine separate computations of the double
integration for each mode.

The moment matrix elements for the half-space having equal
size cells of dimension a X b are found from (28) as

yi+4 peite pyitd prita
h,]z B / / / /
b z;—a yr‘— Ti;=—a

2

SACAEAAR'S

Wi(z)W(x ") da'dy' dz dy (34)
yi+% prxijte purtb pzitd .
Zsz: / . / / / GEyhx[w,y|y)
yi—s Jzj—a Jyx Th—%
(x)WY(y') dz'dy' dz dy (35)
yz+b z+& pyi+d pa; +a
h lz / / / / ﬂv | a5y |y )
yl_b “‘_ z"" Ti—a
y)WE(z ’ (z') dz'dy' dz dy. (36)
and
yi+b pxi+% pyrt+d pzet
Zy = —/ / / / Gz 5y | y)
yi—b Jo;—% Jyr—b Jxp—%
W (y)WE(y') do'dy’ dz dy. T

As mentioned earlier direct evaluation of (34) and (37) would
be very difficult due to the singularity that occurs when the
source and test location are at the same point (self-term). The
self-terms are the dominate terms in the moment matrix and
inaccurate evaluation of these terms will result in unreliable
solutions. For the cross terms (35) and (36) no singularity
occurs because the source and test fields are never at the same
location, but direct evaluation is still difficult due to the four
integrations required. With these problems it is best to work
in the spectral domain.

The dyadic Green’s function for the half-space can be
written as the inverse Fourier transform of

1 o0 o0 =
GEh(“’ | 2’5y | y) = ) / Gen(ks, ky)

o0 v —00

. ke (2=2") giky (y=y') dky dky,.  (38)
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Fig. 6. Driving point impedance of the imverted L antenna for the
TEMo 0,35 mode. (a) Magnitude. (b) Phase. Solid Iine, simulation; dashed
line. measurement.

Applying (38) to (34)-(37) and using the even and odd
properties of the integrands along with a transformation to
polar coordinates, k, = fScosa and k, = fsina, results in

the following
/2
2yt = — / / (ks ky)

-F“(kx,k BdBda (39)
/2
== [ otk
- FRY (ko ky) BdB do (40)

z E -1 v/ z
Zhy]k = Zili 0 = / / GEyh ks, ky)

.kay(kr,k B dp da @1)
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simulation; dashed line, measurement.

where
F5 (ke ky) = cos [k (2, — 25)] cos [ky (y, — y:)]
2k \’[sin (k,b/2)]>
(tem) i)
. <cos (kra) — cos (kga))2 42)

e
F3Y (keyky) = cos[ky (@ — )] cos [ky (v — yi)]

' (sinzflfob) )2 [Sl?k(fj 2/)?] 2
: (COS ("’y]fg - ZS (kob)) 43)
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Fig. 8. A coaxial fed rectangular patch antenna.

F2Y ko, ky) = sin [ka(z; ~ o)) sin [k (4 — ve)]

| [(Sin((iic O_a; f)i]l ([kOb)(Z b/ )]
['sin (kwa/2)] [sin (kyb/2

(kea/D) || hyt/2)

cos (kya) — cos (koa)
(=)

cos (k,b) — 0
( ( yké-;(;(k b)>. )

The expressions in (42)—(44) are the results of the Fourier
transforms of the basis functions evaluated in closed form.
Techniques for efficient evaluation of the integrals in (39)-(41)
can be found in [14], [15].

The excitation vector used for (25) is a delta-gap voltage
generator given as

(45)

Vo= 1 for p equal to feed point
P77 10 otherwise.

The driving point impedance at the location of the delta-gap
voltage generator is computed as
v

Lip = =

7 (46)

where I, is the current at the delta-gap computed by the
method of moments.

IV. COMPARISON OF COMPUTED
AND EXPERIMENTAL RESULTS

A. Inverted L Antenna

Comparisons of measured and simulated results were made
for the open cavity structure shown in Fig. 1 with an electri-
cally short inverted L antenna, shown in Fig. 5. The radii of
focal lengths of the spherical reflector are F; = 0.894 308 m,
Iy, = 0953839 m and D = 0.620494 m as determined in [2]
and for the antenna the wire diameter is 0.9 mm and length
is 2.6 mm located at the planar reflector. The simulated results
are virtually identical to those in [2]. Note that the previous
work [2] is restricted to short wire antennas. For the simulation
the L antenna was divided into 10 cells with a delta-gap source
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Fig. 9. Impedance Smith chart showing the driving point impedance of
the patch antenna without the reflector: solid line, simulation; dashed line,
measurement.

placed between the first and second cells. The location of the
antenna in the cavity was at (—90.6 mm, 15 mm) with d = 1.9
mm. The magnitude and phase of the driving point impedance
are shown in Fig. 6 for the TEMj o 35 mode and in Fig. 7 for
the TEM071735 and TEM170735 modes (the TEM071,35 mode
occurs first in frequency and then the TEM, ¢ 35 mode.)

B. Rectangular Patch Antenna

A measurement of a coaxial center fed rectangular patch
antenna, shown in Fig. 8 with dimension . = 15 mm, W =5
mm, and d = 1 mm, was taken without the reflector. The
driving point impedance is shown in Fig. 9. Here the patch
was divided into 16 cells with a delta-gap source placed in
the center.

C. 3 x 3 Grid in Free Space

Measurements and simulations were performed in free space
for the 3 x 3 grid shown in Fig. 10. The grid consists of 9 unit
cells where each unit cell is of dimension 51.8 mm X 51.8
mm with the metallic grid lines having a length of L = 42
mm and a width of W = 6.35 mm. The gap spacing where
the active device would be was 9.8 mm. Fig. 11 shows the
driving point reflection coefficient magnitude for an extended
onit cell (93.8 mm X 93.8 mm) with the same grid line
width and gap spacing. Next the whole 3 x 3 grid structure
was considered. Fig. 12 shows the driving point reflection
coefficient magnitude in the center gap for the entire grid.
From these results we can observe that there is significant
mutual coupling between the grid elements. Measurements
and simulations were also performed for the other gaps in
the grid. The results indicate that the impedance for edge and
corner gaps differs from that of the middle gap due to the finite
extent of the grid. The technique presented here can calculate
coupling parameters and location specific impedances which
cannot be obtained using a unit cell approach.

EXTENDED
UNIT CELL

UNIT CELL

w

Fig. 10. A 3 x 3 grid in free space with the driving point impedance being
measured in the middle gap.

0.8

e
o

MAGNITUDE S11
o
-

0.2

2 3 4
FREQUENCY (GHz)

Fig. 11. Driving point reflection coefficient magnitude of the unit cell: solid
line, simulation; dashed line, measurement.

V. CONCLUSION

A full-wave moment method implementation has been de-
veloped for the analysis of quasi-optical systems. This tech-
nique uses a dyadic Green’s function which is derived by
separately considering the paraxial and nonparaxial fields.
This form of the dyadic Green’s function is particularly
convenient for quasi-optical systems because of its relative
ease of development. This leads to computation of the moment
matrix elements using a combination of spatial and spectral
domains. Two types of quasi-optical systems were analyzed:
the open cavity resonator, free space patch antenna resonator,
and the grid radiator, where the radiating elements in each
system were of finite size making no unit cell approximations.
As a verification of the moment method, simulated results have
been shown to compare favorably with measurements. The



NUTESON et al.: FULL-WAVE ANALYSIS OF QUASI-OPTICAL STRUCTURES

o o
(-] -]

MAGNITUDE S11
<)
'S

0.2

2 4
FREQUENCY (GHz)

Fig. 12, Driving point reflection coefficient magnitude of the 3 x 3 grid:
solid line, simulation; dashed line, measurement.

technique presented here will aid in the design of quasi-optical
systems by accurately predicting the driving point impedances
of the radiating elements.
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